Open Access
Issue
MATEC Web of Conferences
Volume 33, 2015
ESOMAT 2015 – 10th European Symposium on Martensitic Transformations
Article Number 03011
Number of page(s) 6
Section NiTi-based alloys
DOI https://doi.org/10.1051/matecconf/20153303011
Published online 07 December 2015
  1. S. Subresh, Fatigue of Materials. 2004. [Google Scholar]
  2. S. Eucken and T. Duerig, “The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi,” Acta Metall., vol. 37, no. 8, pp. 2245–2252, 1989. [CrossRef] [Google Scholar]
  3. P. Sedmák, P. Šittner, J. Pilch, and C. Curfs, “Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction,” Acta Mater., vol. 94, pp. 257–270, 2015. [CrossRef] [Google Scholar]
  4. K. Melton and O. Mercier, “Fatigue of NITI thermoelastic martensites,” Acta Metall., vol. 27, no. 1, pp. 137–144, 1979. [CrossRef] [Google Scholar]
  5. P. Šittner, M. Landa, P. Lukáš, and V. Novák, “R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals,” Mech. Mater., vol. 38, no. 5–6, pp. 475–492, 2006. [CrossRef] [Google Scholar]
  6. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, “Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires,” Mater. Sci. Eng. A, vol. 273–275, pp. 658–663, Dec. 1999. [CrossRef] [Google Scholar]
  7. M. F.-X. Wagner and G. Eggeler, “Stress and strain states in a pseudoelastic wire subjected to bending rotation,” Mech. Mater., vol. 38, no. 11, pp. 1012–1025, Nov. 2006. [CrossRef] [Google Scholar]
  8. A. R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M. R. Mitchell, “Rotary-bending fatigue characteristics of medical-grade Nitinol wire.,” J. Mech. Behav. Biomed. Mater., vol. 27, pp. 19–32, Nov. 2013. [CrossRef] [Google Scholar]
  9. M. Frotscher, P. Nörtershäuser, C. Somsen, K. Neuking, R. Böckmann, and G. Eggeler, “Microstructure and structural fatigue of ultra-fine grained NiTi-stents,” Mater. Sci. Eng. A, vol. 503, no. 1–2, pp. 96–98, Mar. 2009. [CrossRef] [Google Scholar]
  10. M. Frotscher, K. Neuking, R. Böckmann, K.-D. Wolff, and G. Eggeler, “In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents,” Mater. Sci. Eng. A, vol. 481–482, pp. 160–165, May 2008. [CrossRef] [Google Scholar]
  11. S. W. Robertson, Stankiewicz, Gong, and R. O. Ritchie, “Cyclic Fatigue of Nitinol,” Proc. Int. Conf. Shape Mem. Superelastic Technol. SMST-2003, 2006. [Google Scholar]
  12. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and a. Tuissi, “Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading,” Int. J. Fatigue, vol. 66, pp. 78–85, 2014. [CrossRef] [Google Scholar]
  13. C. M. Otsuka, K. Wayman, Shape Memory Materials. Cambridge: Cambridge University Press, 1998. [Google Scholar]
  14. G. Eggeler, E. Hornbogen, a Yawny, a Heckmann, and M. Wagner, “Structural and functional fatigue of NiTi shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1–2, pp. 24–33, Jul. 2004. [CrossRef] [Google Scholar]
  15. W. Dixon and A. Mood, “A method for obtaining and analyzing sensitivity data,” J. Am. Stat. …, vol. 43, no. 241, pp. 109–126, 1948. [CrossRef] [Google Scholar]